Acta Crystallographica Section E

Structure Reports
 Online

catena-Poly[[[diaquacalcium(II)]bis[μ-2-(pyridinium-1-yl)butanedioato- $\left.\kappa O^{1}: O^{4}\right]$ 2.5-hydrate]

ISSN 1600-5368

Dong-Kui Tian, Song-Lin Li* and Jian-Feng Hou

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: slli@tju.edu.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.056$
$w R$ factor $=0.144$
Data-to-parameter ratio $=15.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title calcium carboxylate, $\left\{\left[\mathrm{Ca}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right.$-$\left.2.5 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, prepared by the interaction of sodium 2-(pyridi-nium-1-yl)butanedioate with $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in water, adjacent Ca^{2+} ions are joined by a pair of racemic 2-(pyridinium-1yl)butanedioate anions, forming coordination polymer strands which are further extended into a three-dimensional structure by hydrogen bonds between pendant O atoms of the carboxylate groups and water molecules.

Comment

As depicted in Fig. 1, the Ca^{2+} cation in the title compound, (I), is in a distorted octahedral environment with four O atoms from the carboxylate groups of four different 2-(pyridinium-1yl)butanedioate (L) ligands lying in the equatorial plane, and the two aqua ligands occupying the axial positions. Although the $\mathrm{Ca}-\mathrm{O}$ bond lengths $[2.320-2.420$ (3) \AA] are normal, the angles $\mathrm{O} 1 W-\mathrm{Ca} 1-\mathrm{O} 2 W$ of $157.27(11)^{\circ}$ and $\mathrm{O} 5-\mathrm{Ca} 1-\mathrm{O} 7^{\mathrm{i}}$ of $162.23(10)^{\circ}$ (symmetry code as in Table 1) deviate drastically from linearity. In addition, it should be noted that the carboxylate groups of L act in different coordination modes: one is in a mono-syn mode and the other in a mono-anti-skew mode with the Ca^{2+} ion $0.6903 \AA$ above the plane of the carboxylate group. With adjacent Ca^{2+} ions bridged by a pair of racemic L anions, compound (I) displays a one-dimensional strand structure, as shown in Fig. 2.

(I)

The strands are extended into a layer by hydrogen bonds between pendant O atoms of carboxylate groups and water

Figure 1
The coordination environment of $\mathrm{Ca}^{\mathrm{II}}$ in (I). Displacement ellipsoids are drawn at the 35% probability level. [Symmetry codes: (A) $x, 2-y, \frac{1}{2}+z$; (B) $x, 2-y,-\frac{1}{2}+z$.]

Figure 2
The one-dimensional polymer strand of compound (I). H atoms have been omitted for clarity.

Figure 3
The hydrogen-bonded layer structure of (I). Pyridyl rings and H atoms have been omitted for clarity.
molecules (Fig. 3). In constructing the layer, atom O3W, which is located on an inversion center, acts as hydrogen-bond donor to two pendant O atoms of two carboxylate groups from two strands $\left[\mathrm{O} 3 W \cdots \mathrm{O} 2^{\mathrm{v}}\right.$ and $=\mathrm{O} 3 W \cdots \mathrm{O} 2^{\text {vii }} 2.936$ (3) \AA; symmetry code (v) as in Table 2; (viii) $-x, 1-y, z+\frac{1}{2}$] and hydrogen-bond acceptor to an aqua ligand of the third strand [O3W. . O2W = 2.951 (3) Å]. Different layers are connected into a three-dimensional structure through various intermolecualar hydrogen-bond interactions between pendant O atoms $[\mathrm{O} 5 W \cdots \mathrm{O} 6=2.762(3) \AA$ and $\mathrm{O} 4 W \cdots \mathrm{O} 3=$ 2.672 (3) \AA] and aqua ligands [$\mathrm{O} 4 W \cdots \mathrm{O} 1 W^{\mathrm{iii}}=2.730$ (3) \AA].

Experimental

N -Succinopyridine was prepared according to the procedures of Kostyanovsky et al. (2003) and Kotov et al. (2001). The sodium salt $\mathrm{Na} L$ was obtained by neutralization of $\mathrm{H} L$ with NaOH in aqueous solution and recrystallization in water. Compound (I) was prepared by reaction of $\mathrm{Na} L(0.217 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in distilled water (5 ml). Crystals of (I) suitable for X-ray structure analysis were obtained by standing the reaction mixture for several days at ambient temperature.

Crystal data

$\left[\mathrm{Ca}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=509.48$
Monoclinic, $C 2 / c$
$a=31.766$ (14) £
$b=9.8281$ (13) \AA
$c=14.2746(16) \AA$
$\beta=103.018(16)^{\circ}$
$V=4342(2) \AA^{3}$
$Z=8$

$$
D_{x}=1.559 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 40 reflections
$\theta=9.3-25.8^{\circ}$
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colorless
$0.28 \times 0.22 \times 0.20 \mathrm{~mm}$

Data collection

Siemens P4 diffractometer
ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.909, T_{\text {max }}=0.930$
5549 measured reflections
4744 independent reflections
3569 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.036 \\
& \theta_{\max }=27.0^{\circ} \\
& h=-1 \rightarrow 40 \\
& k=-1 \rightarrow 12 \\
& l=-18 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 120 \text { reflections } \\
& \text { intensity decay: } 8 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.144$
$S=1.13$
4744 reflections
303 parameters
H -atom parameters constrained

$$
\left.\left.\begin{array}{rl}
w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0429 P)^{2}\right. \\
& +15.5672 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}\right.
\end{array}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \mathrm{n}\right)
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Ca} 1-\mathrm{O} 1$	$2.320(2)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.240(4)$
$\mathrm{Ca} 1-\mathrm{O} 5$	$2.335(2)$	$\mathrm{O} 3-\mathrm{C} 3$	$1.244(4)$
$\mathrm{Ca} 1-\mathrm{O} 7^{\mathrm{i}}$	$2.348(3)$	$\mathrm{O} 4-\mathrm{C} 3$	$1.245(4)$
$\mathrm{Ca} 1-\mathrm{O} 1 W$	$2.352(3)$	$\mathrm{O} 5-\mathrm{C} 10$	$1.259(4)$
$\mathrm{Ca} 1-\mathrm{O} 4^{\mathrm{ii}}$	$2.357(2)$	$\mathrm{O} 6-\mathrm{C} 10$	$1.235(4)$
$\mathrm{Ca} 1-\mathrm{O} 2 W$	$2.421(3)$	$\mathrm{O} 7-\mathrm{C} 12$	$1.248(5)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.263(3)$	$\mathrm{O} 8-\mathrm{C} 2$	$1.245(4)$
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 5$	$90.03(8)$	$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Ca} 1-\mathrm{O} 2 W$	$117.15(10)$
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 7^{\mathrm{i}}$	$91.38(10)$	$\mathrm{O} 1 W-\mathrm{Ca} 1-\mathrm{O} 2 W$	$157.27(11)$
$\mathrm{O} 5-\mathrm{Ca} 1-\mathrm{O} 7^{\mathrm{i}}$	$162.23(10)$	$\mathrm{O} 4^{\mathrm{ii}}-\mathrm{Ca} 1-\mathrm{O} 2 W$	$87.40(9)$
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 1 W$	$97.24(10)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Ca} 1$	$151.0(2)$
$\mathrm{O} 5-\mathrm{Ca} 1-\mathrm{O} 1 W$	$80.08(11)$	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$125.8(3)$
$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Ca} 1-\mathrm{O} 1 W$	$82.14(12)$	$\mathrm{C} 3-\mathrm{O} 4-\mathrm{Ca} 1^{\mathrm{i}}$	$135.4(2)$
$\mathrm{O}_{1}-\mathrm{Ca} 1-\mathrm{O} 4^{\mathrm{ii}}$	$178.11(9)$	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{O} 4$	$125.0(3)$
$\mathrm{O} 5-\mathrm{Ca} 1-\mathrm{O} 4^{\mathrm{ii}}$	$89.36(8)$	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	$117.1(3)$
$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Ca} 1-\mathrm{O} 4^{\mathrm{ii}}$	$88.66(10)$	$\mathrm{C} 10-\mathrm{O} 5-\mathrm{Ca} 1$	$139.1(2)$
$\mathrm{O} 1 W-\mathrm{Ca} 1-\mathrm{O} 4^{\mathrm{ii}}$	$80.89(9)$	$\mathrm{O} 6-\mathrm{C} 10-\mathrm{O} 5$	$126.0(3)$
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 2 W$	$94.27(9)$	$\mathrm{O} 8-\mathrm{C} 2-\mathrm{O} 7$	$123.1(4)$
$\mathrm{O} 5-\mathrm{Ca} 1-\mathrm{O} 2 W$	$80.38(9)$		

Symmetry codes: (i) $x,-y+2, z-\frac{1}{2}$; (ii) $x,-y+2, z+\frac{1}{2}$.

metal-organic papers

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 10 A \cdots \mathrm{O} 4 W^{\text {iii }}$	0.89	1.84	2.730 (4)	179
$\mathrm{O} 1 W-\mathrm{H} 10 B \cdots \mathrm{O}^{\text {ii }}$	0.98	1.80	2.715 (4)	154
$\mathrm{O} 2 W-\mathrm{H} 20 A \cdots \mathrm{O} 3 W$	0.81	2.14	2.951 (4)	178
$\mathrm{O} 2 W-\mathrm{H} 20 B \cdots \mathrm{O}^{\text {iv }}$	0.87	1.92	2.771 (4)	166
$\mathrm{O} 3 W-\mathrm{H} 30 A \cdots \mathrm{O}^{\text {v }}$	0.90	2.05	2.935 (3)	167
$\mathrm{O} 4 W-\mathrm{H} 40 A \cdots \mathrm{O} 3$	0.87	1.81	2.672 (4)	170
$\mathrm{O} 4 W-\mathrm{H} 40 B \cdots \mathrm{O} 5 W^{\text {vi }}$	0.83	1.99	2.798 (4)	165
O5W-H50A \cdots O6	0.93	1.84	2.761 (4)	174
$\mathrm{O} 5 W-\mathrm{H} 50 \mathrm{~B} \cdots \mathrm{O} 4 W^{\text {vii }}$	0.92	1.96	2.845 (4)	162

Symmetry codes: (ii) $x,-y+2, z+\frac{1}{2}$; (iii) $-x+\frac{1}{2},-y+\frac{3}{2},-z$; (iv) $-x, y,-z+\frac{1}{2}$; (v) $-x,-y+1,-z$; (vi) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (vii) $x,-y+1, z+\frac{1}{2}$.

All H atoms were located in a difference Fourier map and allowed to ride on their respective parent atoms. For the CH and CH_{2} groups, $U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.2 U_{\text {eq }}$ (carrier atom) and for the water molecules, they were set equal to $1.5 U_{\text {eq }}$ (carrier atom).

Data collection: XSCANS (Siemens, 1994); cell refinement: $X S C A N S$; data reduction: $X S C A N S$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Kostyanovsky, R. G., Nikolaev, E. N., Kharybin, O. N., Kadorkina, G. K., Kostyanovsky, V. R. (2003). Mendeleev Commun. 3, 97-99.
Kotov, V. Y., Gorbunova, Y. G., Kostina, S. A., Kadorkina, G. K., Kostyanovsky, V. R., Kostyanovsky, R. G. (2001). Mendeleev Commun. 5, 181-182.
North, A. C. T, Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.
Siemens (1994). XSCANS User's Manual. Version 2. 1, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

