metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dong-Kui Tian, Song-Lin Li* and Jian-Feng Hou

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: slli@tju.edu.cn

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.005 Å R factor = 0.056 wR factor = 0.144 Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[[diaquacalcium(II)]bis[μ -2-(pyridinium-1-yl)butanedioato- κO^1 : O^4]] 2.5-hydrate]

In the title calcium carboxylate, {[$Ca(C_9H_8NO_4)_2(H_2O)_2$]-2.5H₂O}_n, prepared by the interaction of sodium 2-(pyridinium-1-yl)butanedioate with CaCl₂·6H₂O in water, adjacent Ca²⁺ ions are joined by a pair of racemic 2-(pyridinium-1yl)butanedioate anions, forming coordination polymer strands which are further extended into a three-dimensional structure by hydrogen bonds between pendant O atoms of the carboxylate groups and water molecules. Received 9 September 2005 Accepted 8 December 2005 Online 16 December 2005

Comment

As depicted in Fig. 1, the Ca²⁺ cation in the title compound, (I), is in a distorted octahedral environment with four O atoms from the carboxylate groups of four different 2-(pyridinium-1-yl)butanedioate (*L*) ligands lying in the equatorial plane, and the two aqua ligands occupying the axial positions. Although the Ca–O bond lengths [2.320–2.420 (3) Å] are normal, the angles O1*W*–Ca1–O2*W* of 157.27 (11)° and O5–Ca1–O7ⁱ of 162.23 (10)° (symmetry code as in Table 1) deviate drastically from linearity. In addition, it should be noted that the carboxylate groups of *L* act in different coordination modes: one is in a mono-*syn* mode and the other in a mono-anti-skew mode with the Ca²⁺ ion 0.6903 Å above the plane of the carboxylate group. With adjacent Ca²⁺ ions bridged by a pair of racemic *L* anions, compound (I) displays a one-dimensional strand structure, as shown in Fig. 2.

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved The strands are extended into a layer by hydrogen bonds between pendant O atoms of carboxylate groups and water

 $D_x = 1.559 \text{ Mg m}^{-3}$

Cell parameters from 40

 $0.28 \times 0.22 \times 0.20 \text{ mm}$

Mo $K\alpha$ radiation

reflections

 $\theta = 9.3-25.8^{\circ}$ $\mu = 0.36 \text{ mm}^{-1}$

T = 294 (2) K

 $R_{\rm int} = 0.036$

 $\theta_{\text{max}} = 27.0^{\circ}$ $h = -1 \rightarrow 40$

 $k = -1 \rightarrow 12$

 $l = -18 \rightarrow 17$

3 standard reflections

every 120 reflections

intensity decay: 8%

Block, colorless

Figure 1

The coordination environment of Ca^{II} in (I). Displacement ellipsoids are drawn at the 35% probability level. [Symmetry codes: (A) x, 2 - y, $\frac{1}{2} + z$; (B) x, 2 - y, $-\frac{1}{2} + z$.]

Figure 2

The one-dimensional polymer strand of compound (I). H atoms have been omitted for clarity.

Figure 3

The hydrogen-bonded layer structure of (I). Pyridyl rings and H atoms have been omitted for clarity.

molecules (Fig. 3). In constructing the layer, atom O3W, which is located on an inversion center, acts as hydrogen-bond donor to two pendant O atoms of two carboxylate groups from two strands $[O3W \cdots O2^v]$ and $= O3W \cdots O2^{vii}$ 2.936 (3) Å; symmetry code (v) as in Table 2; (viii) -x, 1 - y, $z + \frac{1}{2}$] and hydrogen-bond acceptor to an aqua ligand of the third strand $[O3W \cdots O2W = 2.951$ (3) Å]. Different layers are connected into a three-dimensional structure through various intermolecualar hydrogen-bond interactions between pendant O atoms $[O5W \cdots O6 = 2.762$ (3) Å and $O4W \cdots O3 =$ 2.672 (3) Å] and aqua ligands $[O4W \cdots O1W^{iii} = 2.730$ (3) Å].

Experimental

N-Succinopyridine was prepared according to the procedures of Kostyanovsky *et al.* (2003) and Kotov *et al.* (2001). The sodium salt NaL was obtained by neutralization of HL with NaOH in aqueous solution and recrystallization in water. Compound (I) was prepared by reaction of NaL (0.217 mg, 1 mmol) and CaCl₂·6H₂O in distilled water (5 ml). Crystals of (I) suitable for X-ray structure analysis were obtained by standing the reaction mixture for several days at ambient temperature.

Crystal data

 $[Ca(C_9H_8NO_4)_2(H_2O)_2] \cdot 2.5H_2O$ $M_r = 509.48$ Monoclinic, C2/c a = 31.766 (14) Å b = 9.8281 (13) Å c = 14.2746 (16) Å $\beta = 103.018$ (16)° V = 4342 (2) Å³ Z = 8

Data collection

Siemens P4 diffractometer ω scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.909, T_{max} = 0.930$ 5549 measured reflections 4744 independent reflections 3569 reflections with $I > 2\sigma(I)$

Refinement

Table 1

Selected geometric parameters (Å, °).

Ca1—O1	2.320 (2)	O2-C1	1.240 (4)
Ca1-O5	2.335 (2)	O3-C3	1.244 (4)
Ca1–O7 ⁱ	2.348 (3)	O4-C3	1.245 (4)
Ca1 - O1W	2.352 (3)	O5-C10	1.259 (4)
Ca1-O4 ⁱⁱ	2.357 (2)	O6-C10	1.235 (4)
Ca1 - O2W	2.421 (3)	O7-C12	1.248 (5)
O1-C1	1.263 (3)	O8-C12	1.245 (4)
O1-Ca1-O5	90.03 (8)	$O7^{i}-Ca1-O2W$	117.15 (10)
O1-Ca1-O7 ⁱ	91.38 (10)	O1W-Ca1-O2W	157.27 (11)
O5-Ca1-O7 ⁱ	162.23 (10)	O4 ⁱⁱ -Ca1-O2W	87.40 (9)
O1-Ca1-O1W	97.24 (10)	C1-O1-Ca1	151.0 (2)
O5-Ca1-O1W	80.08 (11)	O2-C1-O1	125.8 (3)
O7 ⁱ -Ca1-O1W	82.14 (12)	C3-O4-Ca1i	135.4 (2)
O1-Ca1-O4 ⁱⁱ	178.11 (9)	O3-C3-O4	125.0 (3)
O5-Ca1-O4 ⁱⁱ	89.36 (8)	O3-C3-C4	117.1 (3)
O7 ⁱ -Ca1-O4 ⁱⁱ	88.66 (10)	C10-O5-Ca1	139.1 (2)
O1W-Ca1-O4 ⁱⁱ	80.89 (9)	O6-C10-O5	126.0 (3)
O1-Ca1-O2W	94.27 (9)	O8-C12-O7	123.1 (4)
O5-Ca1-O2W	80.38 (9)		

Symmetry codes: (i) $x, -y + 2, z - \frac{1}{2}$; (ii) $x, -y + 2, z + \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1W-H10A\cdots O4W^{iii}$	0.89	1.84	2.730 (4)	179
$O1W-H10B\cdots O3^{ii}$	0.98	1.80	2.715 (4)	154
$O2W - H20A \cdots O3W$	0.81	2.14	2.951 (4)	178
$O2W - H20B \cdot \cdot \cdot O8^{iv}$	0.87	1.92	2.771 (4)	166
$O3W-H30A\cdots O2^{v}$	0.90	2.05	2.935 (3)	167
O4W−H40A···O3	0.87	1.81	2.672 (4)	170
$O4W-H40B\cdots O5W^{vi}$	0.83	1.99	2.798 (4)	165
O5W−H50A···O6	0.93	1.84	2.761 (4)	174
$O5W-H50B\cdots O4W^{vii}$	0.92	1.96	2.845 (4)	162

Symmetry codes: (ii) $x, -y + 2, z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (iv) $-x, y, -z + \frac{1}{2}$; (v) -x, -y + 1, -z; (vi) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (vii) $x, -y + 1, z + \frac{1}{2}$.

All H atoms were located in a difference Fourier map and allowed to ride on their respective parent atoms. For the CH and CH₂ groups, $U_{\rm iso}({\rm H})$ values were set equal to $1.2U_{\rm eq}({\rm carrier atom})$ and for the water molecules, they were set equal to $1.5U_{\rm eq}({\rm carrier atom})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Kostyanovský, R. G., Nikolaev, E. N., Kharybin, O. N., Kadorkina, G. K., Kostyanovsky, V. R. (2003). *Mendeleev Commun.* 3, 97–99.
- Kotov, V. Y., Gorbunova, Y. G., Kostina, S. A., Kadorkina, G. K., Kostyanovsky, V. R., Kostyanovsky, R. G. (2001). *Mendeleev Commun.* 5, 181–182.
- North, A. C. T, Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.
- Siemens (1994). XSCANS User's Manual. Version 2. 1, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.